If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x^2-256=0
a = 63; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·63·(-256)
Δ = 64512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64512}=\sqrt{9216*7}=\sqrt{9216}*\sqrt{7}=96\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{7}}{2*63}=\frac{0-96\sqrt{7}}{126} =-\frac{96\sqrt{7}}{126} =-\frac{16\sqrt{7}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{7}}{2*63}=\frac{0+96\sqrt{7}}{126} =\frac{96\sqrt{7}}{126} =\frac{16\sqrt{7}}{21} $
| Z-7z=-6 | | -12x+2x^2+16=0 | | 5−3x=26 | | 3x+1+x-7=84 | | v/26=–13 | | 9x/6-7x=15 | | 5(v+5)-8v=31 | | 4(2x-3)=8-2x | | 6x²-2x-18=0 | | 19-6g=-13-14g+4g | | -5x+4=16 | | -16-13n=-14n | | 6x-4=6(x+1) | | y−–86=359 | | 10-3b=-10+2b | | 3-(x-2)=1/2(x+3) | | -5-5s=-10s | | 5n-(-(n+9))=3 | | 9-4/2=2(y+2)/3 | | c/31=26 | | 4t+6=-10+6t | | W(n)=32-0.08n | | 7x+8=-3x | | -4+7k=-6+8k+9 | | x-4=2(x+8)/ | | 5(x+12)-8-3x=12 | | X/3x+9=33 | | -5(x+7)-7=-8(x+6) | | -9c=4-5c | | 5n-(n+9)=3 | | x-4=2(x+8/ | | 8+8z+9=-10+5z |